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Abstract. Fine-resolution and high-accuracy meteorological datasets are essential for understanding climate change
processes and their cascading impacts on hydrology, water resources management, and ecological systems. In this study, we
present a nationwide, high-resolution dataset of six daily meteorological variables across China from 1961 to 2021, including
average temperature, maximum temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine
duration. The dataset was generated through a hierarchical reconstruction framework that utilizes daily observations from
2345 meteorological stations across China, combined with station-level topographic attributes (latitude, longitude, and
elevation). By decoding the nonlinear relationships among six meteorological variables and their spatial covariates, the
framework enables the generation of gridded daily fields at 1 km resolution with spatial continuity and internal consistency .
Validation against 118 in-situ stations confirms that the dataset achieves high accuracy across all variables, with average,
maximum, and minimum temperatures exhibiting minimal errors (median RMSEs: 1.03°C, 1.19°C, 1.34°C; median MEs: -
0.09°C, -0.10°C, -0.08°C) and high consistency with in-situ data (median CCs: 1.00, 0.99, 0.99). Atmospheric pressure
shows minimal error (median RMSE: 2.48 hPa; median ME: -0.02 hPa) and high consistency (median CC: 0.98). Although
relative humidity has slightly weaker accuracy (median RMSE: 6.02%; median ME: -0.5%; median CC: 0.90), it still
surpasses standard benchmarks. Sunshine duration maintains high precision (median RMSE: 1.48 h; median ME: 0.05 h;
median CC: 0.93), demonstrating overall excellent product quality. Further comparison reveals that in high-altitude and
topographically complex regions, the reconstructed product demonstrates higher actual accuracy than suggested by station-
to-grid validation, as spatial mismatches between stations and grid cells lead to systematic underestimation. Free access to

the dataset available at https://doi.org/10.11888/Atmos.tpdc.301341 or https://cstr.cn/18406.11.Atmos.tpdc.301341.

1 Introduction

With advances in computational power and remote sensing technologies, hydrological modeling has increasingly evolved

toward fully distributed simulations, while climate change research continues to expand across broader spatial and temporal



35

40

45

50

55

60

65

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-291
Preprint. Discussion started: 30 June 2025
(© Author(s) 2025. CC BY 4.0 License.

Open Access
suoIssnasIqg

scales. These developments have placed growing demands on the resolution and accuracy of basic meteorological inputs,
particularly in ungauged and topographically complex basins such as the Tibetan Plateau. High-resolution and high-quality
meteorological datasets are essential for capturing fine-scale climate signals, representing land—atmosphere interactions, and
supporting hydrological, ecological, and environmental assessments.

In recent decades, a wide range of meteorological and environmental variables—such as land and sea surface
temperatures, precipitation (King et al., 2003), vegetation indices (Zeng et al., 2022), soil moisture (Brocca et al., 2017), air
quality (Martin, 2008), and carbon emissions (Wunch et al., 2017) —have been derived from remote sensing observations
and data assimilation systems. These satellite-based products offer broad spatial coverage and long-term continuity, enabling
significant advances in water resources monitoring and drought-related climate assessment, particularly in data-scarce
regions (Sheffield et al., 2018). However, despite their strengths, such products often struggle to represent near-surface
meteorological conditions with sufficient precision. Their performance is typically constrained by atmospheric interference,
cloud contamination, and limited spatial resolution—factors that become particularly problematic in regions with highly
variable terrain. As a result, many satellite-derived datasets fail to meet the spatial and temporal requirements of land surface
modeling, hydrological forecasting, and local-scale climate analysis. To mitigate these limitations, assimilation-based
approaches have been increasingly adopted to integrate satellite data, reanalysis fields, and ground-based observations for
near-surface meteorological forcing generation (Rodell et al., 2004; Laiolo et al., 2015; Liu et al., 2019; Khaki et al., 2020).
While these efforts improve data consistency and spatial completeness, significant uncertainties remain—especially in areas
like western China, where rugged topography and sparse station distribution pose persistent challenges (Gao and Liu, 2013;
Yang et al., 2013; Wang et al., 2016; Tang et al., 2016; Qi et al., 2018). These limitations underscore the pressing need for
regionally tailored, high-resolution meteorological datasets that are capable of capturing local climatic variability and
supporting reliable simulation in hydrological modeling, drought risk forecasting, and water resources management.

Recent efforts to generate gridded meteorological forcing datasets in China have primarily followed three
methodological approaches. The first approach is based on spatial interpolation of in-situ station data to generate gridded
fields (Li, 2008). However, interpolation methods that do not explicitly account for topographic complexity and
environmental gradients often yield limited accuracy, particularly in mountainous regions (Li and Heap, 2011; Yu et al.,
2015; Yang and Xing, 2021). To improve spatial realism, elevation-dependent interpolation schemes have been applied to
reconstruct precipitation and temperature in regions such as the Heihe River Basin, the Tibetan Plateau, and the headwaters
of the Yangtze and Yellow Rivers (Wang et al., 2017; Sun and Su, 2020; Zhao et al., 2022; Zhang et al., 2024). The second
approach involves spatial downscaling and multi-source data fusion. This includes deriving high-resolution fields from
coarse-resolution reanalysis or climate datasets, or combining satellite, reanalysis, and station data to reconstruct near-
surface meteorological variables. For instance, Li et al. (2014) employed a two-step interpolation method to generate 1 km
gridded datasets of air temperature, pressure, humidity, and wind speed across China. Peng et al. (2019) produced monthly
gridded temperature and precipitation data for 1901-2017 using delta downscaling applied to CRU and WorldClim inputs.
He et al. (2020) developed the China Meteorological Forcing Dataset (CMFD), which integrates observations from over
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1,000 stations with GLDAS and MERRA reanalysis products to provide daily meteorological variables at 0.1° resolution.
Zhao et al. (2022) further enhanced precipitation accuracy over the Yarlung Zangbo Basin by correcting and merging
multiple satellite precipitation products with in-situ records. The third approach draws upon machine learning techniques to
model complex relationships between meteorological variables and spatial covariates. Global satellite-derived precipitation
products such as CMORPH (Joyce et al., 2004; Xie et al., 2017) and PERSIANN(Sorooshian et al., 2014; Sadeghi et al.,
2019) exemplify early use of neural networks for rainfall estimation. In the Chinese context, recent studies—including those
by Wu et al. (2020), Hong et al.(2021), and Jing et al. (2022) —have applied deep learning models to improve the spatial
resolution and accuracy of multi-source precipitation datasets. For temperature, Pang et al. (2017) evaluated machine
learning methods for downscaling daily mean temperature in the Pearl River Basin using global climate model outputs.
Zhang et al. (2021) showed that a gradient boosting approach outperformed traditional reanalysis datasets such as JRA-55
and ERA-Interim over the Tibetan Plateau. He et al. (2022) applied Gaussian process regression to generate the
GPRChinaTemplkm dataset, a 1 km resolution monthly temperature product for 1951-2020. However, the development of
machine learning-based gridded products for other meteorological variables—such as atmospheric pressure, humidity,
sunshine duration, and wind speed—remains limited and warrants further research (Li and Zha, 2018; Liu et al., 2022).

The objective of this study is to develop a high-resolution and accuracy-assessed dataset of daily near-surface
meteorological variables across mainland China, suitable for applications in hydrological modeling, environmental
monitoring, and climate analysis. To achieve this, a hierarchical and progressive reconstruction framework was implemented
to generate gridded fields of six variables—average, maximum, and minimum air temperature, atmospheric pressure, relative
humidity, and sunshine duration. These variables were reconstructed at approximately 2 meters above ground level at a
spatial resolution of 1 km, and the framework allows for adaptation to other spatial scales supported by the digital elevation
model (DEM). A multilayer perceptron (MLP) regression model was used to capture nonlinear relationships between station
observations and topographic predictors (e.g., latitude, longitude, and elevation), enabling fine-scale reconstruction across

complex terrain.

2 Materials
2.1 Training and validation data from CMA

Daily records of meteorological variables—including longitude, latitude, elevation, average temperature, maximum
temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—were obtained from
2,440 meteorological stations operated by the China Meteorological Administration (CMA) for the period 1961-2021. To
support independent model validation, a total of 95 stations were selected as evaluation sites based on three principles: (1)
ensuring geographical representativeness in terms of longitude, latitude, and elevation; (2) in densely monitored areas such

as eastern China, a greater number of evaluation stations were retained without significantly reducing the size of the training
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dataset; and (3) in sparsely monitored regions such as western China (including Tibet and Xinjiang), fewer stations were
assigned to the evaluation set in order to preserve sufficient data for model training. The remaining 2,345 stations were used

exclusively for training purposes. The spatial distribution of both training and evaluation stations is shown in Figure 1.
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Figure 1: The spatial distribution of training and evaluation meteorological stations in China.

For the years 2020 and 2021, daily records are limited to air temperature, as measurements of atmospheric pressure,
relative humidity, and sunshine duration are unavailable during this period. Due to variations in the temporal coverage of
individual stations, the amount of available daily data for model training and evaluation also differs across sites. The

105 temporal distribution of operational meteorological stations from 1961 to 2021 is presented in Figure 2.
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Figure 2: The spatial distribution of training and evaluation meteorological stations in China.
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2.2 Validation data from supplementary ground-based observations
2.2.1 Ground observations provided by DWR

To address the limited spatial coverage of validation stations in the Tibet region, daily average temperature observations
from 12 ground-based meteorological stations were obtained from the Department of Water Resources (DWR). These
supplementary data enhance the robustness of model evaluation in western China. The locations of the DWR stations are
shown in Figure 1, and metadata for each station are provided in Table 1.

Table 1: Detailed information on records from DWR ground-based meteorological observation stations.

Number | Station Name Station Type Time Range Element Type

1 Nugesha Meteorological | 2001.1.1~2003.12.31

2 Yangcun Meteorological | 2001.1.1~2003.12.31

3 Nuxia Meteorological | 2001.1.1~2003.12.31

4 Jiangzi Meteorological | 2001.1.1~2001.12.31

5 Rikaze Meteorological | 2001.1.1~2001.12.31

6 Pangduo Meteorological | 2001.1.1~2003.12.31

— - Average temperature

7 Tangjia Meteorological | 2001.1.1~2003.12.31

8 Lhasa Meteorological | 2001.1.1~2003.12.31

9 Yangbajing Meteorological | 2001.1.1~2003.12.31
10 Gongbujiangda | Meteorological | 2001.1.1~2003.12.31
11 Gengzhang Meteorological | 2001.1.1~2003.12.31
12 Bayi Water Level 2001.1.1~2003.5.31

2.2.2 Literature-based datasets from the National Tibetan Plateau Data Center

To supplement observational data for the evaluation of gridded meteorological products, a variety of station-based datasets
were obtained from the National Tibetan Plateau Data Center (TPDC, http://data.tpdc.ac.cn), as represented by the blue flag
symbols in Figure 1. These include: (1) a publicly available dataset of hourly land—atmosphere interaction observations from
12 field stations (Ma et al., 2024) , covering the period 2005-2021, from which 2 stations were selected after quality control
for use as independent validation sites; (2) data from 18 stations within the HHIWATER hydrometeorological observation
network in the upper reaches of the Heihe River Basin (Liu et al., 2018; Che et al., 2019); and (3) additional station-based
records from 11 individual stations, including 2 stations from Zhang (2018a, 2018b); 3 stations from Gao (2018); 2 stations
from Luo (2019); and 1 station each from Ma (2018), Wang and Wu (2019), Luo and Zhu (2020), and Meng and Li (2023).

2.2.3 Validation data from GSOD

The Global Surface Summary of Day (GSOD) dataset, compiled by the National Centers for Environmental Information
(NCEI), is based on international data exchanges conducted under the World Meteorological Organization (WMO) World
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Weather Watch Program. This dataset provides daily summaries of 18 surface meteorological variables from more than
9,000 global stations, with records available from 1929 to the present. Observation data from eight meteorological stations in

the Taiwan region were obtained from the NCEI online archive (https://www.ncei.noaa.gov/access/search/data-

search/global-summary-of-the-day) and processed for use in validation. Detailed metadata and data availability for these

stations are summarized in Table 2.

Table 2: Detailed meteorological data from 8 meteorological stations of Taiwan Region.

Number Station name Time range Element Type

1 TAINAN 593580 1973.1.7~1998.12.31

2 SUNGSHAN 1961.1.1~2021.12.31

3 TANSHUI 1973.1.7~1977.10.31

4 ILAN CITY 1973.1.7~1998.12.31 Average temperature,

5 TAIBEI 1973.1.1~1998.12.31 | Maximum temperature,
6 TAINAN 1961.1.1~2021.12.31 minimum temperature
7 TAOYUAN 1961.1.1~1999.7.26

8 IN%}SI\IILIAS"II}IJCI)\II\(I}AL 1973.1.1~2021.12.31

2.3 Static geospatial input: SRTM DEM (1km)

The Digital Elevation Model (DEM) provides high-resolution geographic information—including longitude, latitude,
and elevation—that is required for the spatial reconstruction of meteorological variables. In this study, the DEM was used as
an essential input for the reconstruction model to ensure spatial consistency and accuracy. Although the model supports
flexible output resolutions, a spatial resolution of 1 km was selected to balance computational efficiency and data detail. The
DEM used herein was derived by resampling the latest version of the Shuttle Radar Topography Mission (SRTM) data
(version 4.1), as provided by the Consortium for Spatial Information of the CGIAR (Jarvis et al., 2008).

2.4 Climate regionalization map of China

The Climate Regionalization Map of China, compiled by the China Meteorological Administration in 1978 using climate
data from 1951 to 1970, divides the country into nine climatic zones. The dataset is publicly available via the Resource and

Environmental Science Data Platform (https:/www.resdc.cn/). For the purpose of comparative analysis of regional climatic

patterns, the four subtropical zones—Northern Subtropical, Middle Subtropical, Southern Subtropical, and Southern
Subtropical—were merged into a single Subtropical Zone. The revised classification scheme consists of six zones: Plateau
Climate Zone, Northern Temperate Zone, Middle Temperate Zone, Southern Temperate Zone, Subtropical Zone, and Middle

Tropical Zone, as illustrated in Figure 1.
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2.5 Existing gridded products for comparison

To assess the reliability and application potential of the reconstructed meteorological variables, representative and widely
used gridded datasets were selected for comparison based on their scientific relevance and availability. Specifically, for
average temperature, atmospheric pressure, and relative humidity, we employed the latest version of the China
Meteorological Forcing Dataset (CMFD 2.0), whose earlier versions have been extensively used in land surface,
hydrological, and ecological modeling over China (He et al., 2020). As CMFD 2.0 currently does not include sunshine
duration, the Homogenized Daily Sunshine Duration (SSD) dataset developed by He et al. (2025) was additionally
incorporated to enable comparative evaluation of the spatial and temporal consistency of sunshine-related variables. Given
the scarcity of publicly available sunshine duration datasets, the SSD provides a valuable reference for national-scale
assessments over China.

The CMFD 2.0 (He et al., 2024) provides high-resolution (0.1°), 3-hourly gridded meteorological data for the period
1951-2020, covering the land area between 70°E—140°E and 15°N-55°N. It includes near-surface temperature, surface
pressure, specific humidity, wind speed, radiation, and precipitation. Compared to previous versions, CMFD 2.0 incorporates
ERAS reanalysis and station observations through updated data sources and artificial intelligence techniques, particularly for
radiation and precipitation variables. It also introduces metadata on station relocations and expands the spatial coverage
beyond China's borders, thereby improving temporal consistency and cross-regional applicability.

The SSD dataset (He, 2024) offers spatially continuous and temporally consistent records of daily sunshine duration
across China from 1961 to 2022, at a spatial resolution of 2.0° x 2.0°. It was developed using observations from more than
2,200 meteorological stations and addresses inhomogeneities in the raw records caused by non-climatic factors, including

nationwide station relocations and the widespread transition from manual to automatic instruments in 2019.

3 Methodology
3.1 MLP-based hierarchical progressive reconstruction framework

The reconstruction of near-surface meteorological fields in this study is based on multilayer perceptron (MLP) models—a
class of deep feedforward neural networks capable of capturing complex nonlinear relationships through layered
transformations (Bisong, 2019). Each MLP consists of an input layer, multiple hidden layers, and an output layer, and is
trained using a two-phase process: feedforward propagation, in which input data are transmitted through the network to
produce predictions, and backpropagation, during which model parameters are iteratively adjusted to minimize prediction
errors. This learning mechanism enables MLPs to extract spatial and statistical patterns from high-dimensional data while
maintaining strong generalization capability. Owing to these characteristics, MLPs have been successfully applied in diverse
domains such as medical diagnostics (Karayilan and Kilic, 2017; Desai and Shah, 2021), finance (Duan, 2019; Weytjens et
al., 2021), and hydrology (Singh et al., 2012; Choubin et al., 2016; Ren et al., 2020).
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In this study, MLP models serve as the computational foundation of the hierarchical progressive reconstruction
framework developed to generate high-resolution, spatially complete datasets of near-surface meteorological variables. This
framework is designed to address both variable interdependence and geographic heterogeneity by reconstructing each target
variable sequentially using a tailored set of spatial and meteorological predictors. As illustrated in Figure 3, it consists of two
functional modules: a training module and a reconstruction module. The training module learns nonlinear spatial mapping
functions from in-situ station data, capturing daily spatial patterns across complex terrain. The reconstruction module then
applies the trained parameters to gridded predictor layers to generate continuous spatial fields at the desired resolution. To
ensure both the accuracy and feasibility of the reconstruction, input features are selected based on their relevance to the
spatial distribution of each variable and the availability of high-resolution gridded data. Topographic predictors (latitude,
longitude, and elevation) are used consistently throughout the framework, while previously reconstructed meteorological
variables are incorporated as auxiliary inputs in subsequent steps.

The hierarchical reconstruction framework comprises four sequential steps, each targeting a specific meteorological
variable—(a) air temperature, (b) atmospheric pressure, (c) relative humidity, and (d) sunshine duration. This ordering is
guided by both physical dependencies and statistical considerations, allowing upstream variables to serve as essential inputs
for reconstructing downstream variables. In the first step, air temperature is reconstructed using only geographic
predictors—Ilongitude, latitude, and elevation. Although solar radiation and land surface characteristics, which fundamentally
shape temperature patterns, are not explicitly included (Peixoto and Oort, 1992; Hartmann, 2016), these geographic features
serve as effective proxies for capturing dominant spatial gradients. In the second step, atmospheric pressure is modeled using
a three-layer MLP, incorporating geographic variables and temperature. Atmospheric pressure is jointly determined by air
density and gravitational acceleration, both of which vary with temperature and elevation due to their effects on the
atmospheric hydrostatic balance (Mason et al., 2016). Including temperature as a predictor thus improves the model’s ability
to reproduce its spatial variability. The third step addresses relative humidity, modeled using a four-layer MLP with
geographic predictors, temperature, and atmospheric pressure as inputs. Relative humidity depends on both actual and
saturation vapor pressures (Wallace and Hobbs, 2006; Mason et al., 2016) ; the former is partially influenced by atmospheric
pressure, while the latter is primarily governed by temperature and increases exponentially according to the Clausius—
Clapeyron relationship. Incorporating both temperature and pressure enhances the model’s ability to capture the complex
spatial behavior of humidity. Building on the preceding steps, the final reconstruction targets sunshine duration, which is
influenced by the combined effects of the solar astronomical position, atmospheric radiative processes, and synoptic-scale
weather systems. According to WMO (2023), sunshine duration is defined as the total time during which direct solar
irradiance exceeds 120 W/m?2. Geographic predictors provide the spatial context, while temperature, pressure, and humidity
reflect dynamic atmospheric states and cloud-related feedbacks. These variables are physically grounded and observationally
accessible. A four-layer MLP model is therefore employed in the final step to reconstruct the spatial distribution of sunshine

duration.
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Figure 3: MLP-based hierarchical progressive reconstruction framework for China.

Overall, this progressive framework ensures that each reconstruction step is informed by physically meaningful and

215 context-specific predictors. By integrating the hierarchical dependencies among meteorological variables, the approach

yields spatially complete and physically consistent gridded datasets suitable for large-scale climate and environmental
applications.

3.2 Evaluation metrics

In this study, four evaluation metrics were employed: Mean Error (ME), Mean Squared Error (MSE), Root Mean Square
220  Error (RMSE), and Correlation Coefficient (CC). These metrics were utilized in two distinct phases: the MLP model training

phase and the meteorological products evaluation phase. The formulas for the four metrics are as follows:

1 n
ME == (V- )
t=1

n
1
MSE = EZ(Y} -7
t=1

RMSE = VMSE
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Where n is the total number of days in the time series; t stands for the t-th day; Y; and Y stand for the in-situ value of

the target variable and the mean in-situ value of the target variable, respectively; and ¥; and ¥ stand for the model's estimated
value and the mean estimated value, respectively.

During the training phase, MSE was used as the loss function to measure and optimize the performance of the MLP
model. Upon completion of the training, ME and CC were computed between the estimated outputs—derived from the
model parameters at the optimal training state— and in-situ records of the target variable, with particular emphasis on CC to
ensure comprehensive model performance evaluation. If the MSE was low but the CC was poor, the hyperparameters of the
deep learning model were adjusted, and training continued until satisfactory results were achieved.

In the subsequent evaluation phase of the meteorological reconstruction products, RMSE, ME, and CC were calculated
between in-situ records and corresponding grid estimates. These metrics effectively validated the accuracy and reliability of

the reconstruction products, confirming discrepancies with the observed data.

4 Results and discussion
4.1 MLP training and test results

To evaluate the generalization capability of the reconstruction models and prevent overfitting, we randomly assigned 10% of
the daily in-situ observations from 1961 to 2021 to the test dataset using a fixed random seed, with the remaining 90% used
for training. Figure 4 presents the performance metrics of the daily MLP models across six meteorological variables: average
temperature, maximum temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine duration.
Three standard evaluation metrics are used: ME (Figure 4(a)), MSE (Figure 4(b)), and CC (Figure 4(c)). The mean values of
all metrics are highly consistent between training and test phases, indicating strong generalization and no evidence of
overfitting. These results confirm the stability and precision of the deep learning-based hierarchical progressive
reconstruction framework. Notable deviations across all metrics are limited to a very small number of days and are primarily

attributed to substantial gaps in the in-situ observations.

10
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Figure 4: Line graphs of metrics (MSE, ME, CC) for optimal parameters in daily training and testing of MLP models from 1961 to
2021.

The ME values are close to zero for all variables in both phases. Specifically, the mean ME for maximum and minimum
temperatures is exactly 0 °C, while the other four variables also show near-zero mean errors, with at least one phase yielding
a mean ME of 0. The range of ME values is also narrow. During training, ME ranges from —0.49 °C to 0.46 °C for average
temperature, —3.55 hPa to 2.61 hPa for atmospheric pressure, —2.15% to 1.96% for relative humidity, and —0.54 h to 0.50 h
for sunshine duration. The test phase exhibits even narrower ME ranges: —0.32 °C to 0.36 °C (average temperature), —2.25
hPa to 1.94 hPa (atmospheric pressure), —1.83% to 1.49% (relative humidity), and —0.42 h to 0.41 h (sunshine duration).
These results suggest minimal systematic bias in the model predictions across all variables. The MSE, which emphasizes the
impact of large residuals by squaring the error magnitude, consistently exceeds the ME across all variables. As shown in
Figure 4(b), the daily MSE values are low in both phases, with only a slight increase in the test phase. Temperature-related
variables—including average, maximum, and minimum temperature—exhibit low and stable MSE values, with means below
1 °C? and only minor differences (typically 0.1 °C?-0.3 °C?) between training and test phases. This indicates that the model
captures temperature dynamics with high accuracy and strong generalization. For atmospheric pressure, which inherently
exhibits a larger numerical scale, the mean MSE values remain relatively low—6.9 hPa? in the training phase and 8.5 hPa? in
the test phase. Notably elevated MSE values are observed only on a few days in 1961, primarily due to substantial gaps in
the observed atmospheric pressure records. Relative humidity and sunshine duration also show consistently low error levels,
with training phase MSEs of 14.1 %? and 1.2 h?, and slightly higher values of 20.7 %? and 1.8 h? in testing phase. Analysis of
the CC value indicates strong agreement between model estimates and observed values across all variables. Notably,
atmospheric pressure achieves perfect agreement, with a mean CC of 1.00 in both phases. Average, maximum, and minimum

temperatures also show consistently high correlations, with mean CCs of 0.98, 0.98, and 0.99 in the training phase, and 0.97,
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0.97, and 0.98 in the testing phase. Although the CCs for relative humidity and sunshine duration are slightly lower, they
remain strong—0.94 and 0.91 in training, and 0.92 and 0.87 in testing, respectively.

Collectively, the results highlight the proposed framework’s ability to accurately identify and reconstruct the spatial
structures of diverse meteorological variables, demonstrating strong generalization across different element types and

conditions.

4.2 Validation of gridded meteorological element products using in-situ data

An independent validation was conducted using long-term in-situ records from 118 meteorological stations, as described in
Sections 2.1 and 2.2. These stations were entirely excluded from the model training and testing phases, and their
observations served as reference data for an objective evaluation of the reconstructed products’ accuracy and spatial
generalizability. The validation results confirm that the reconstructed meteorological products achieve high overall accuracy,
with particularly strong performance in regions with dense training data. Notably, even in areas with sparse or absent
observations—such as northwestern China and Taiwan—the model maintains stable and reliable performance, indicating
strong spatial generalizability and a capacity to extrapolate beyond the training domain. This highlights the potential of the
proposed framework for broad application in diverse climatic and geographic settings. Model performance was quantified by
calculating RMSE, ME, and CC between the 1 km gridded estimates and the corresponding station observations. The
evaluation metrics were visualized through box plots (Figure 5) and spatial distribution maps (Figures 6).

As shown in the box plots of RMSE, ME, and CC (Figure 5), the reconstructed products for average, maximum, and
minimum air temperature exhibit minimal errors and excellent consistency with in-situ observations. Median RMSEs are
1.03°C, 1.19°C, and 1.34°C, respectively; median MEs are close to zero (—0.09°C, —0.10°C, and —0.08°C); and median CCs
are exceptionally high (1.00, 0.99, and 0.99). Despite its inherently larger magnitude, atmospheric pressure also
demonstrates high precision, with a median RMSE of 2.48 hPa, ME of —0.02 hPa, and CC of 0.98. In comparison, the
relative humidity product shows moderately lower agreement with observations, reflected in a median RMSE of 6.02%, ME
of —0.5%, and CC of 0.90. However, since it is primarily used as an input for the reconstruction of sunshine duration, its
effect on overall model performance is limited. Indeed, the sunshine duration product demonstrates higher accuracy, with a
median RMSE of 1.48 h, ME of 0.05 h, and CC of 0.93. Although relative humidity exhibits slightly weaker performance
than other variables, its accuracy still exceeds typical benchmarks and remains suitable for practical applications.

The spatial distribution of RMSE, ME, and CC for all six meteorological variables is further illustrated in Figures 6.
Consistent with expectations, the Subtropical and Southern Temperate Zones in southeastern China (STZ-southeastern China)
display the best performance across all variables, largely due to the high density of training stations in these regions. In
contrast, performance metrics are relatively lower in the Middle Temperate, Southern Temperate, and Plateau Climate Zones
of northwestern China (MSPZ-northwest China), as well as in Taiwan, where no stations were included in training.
Nevertheless, model performance in these regions remains robust. Notably, despite the absence of training data in Taiwan,

the MLP model accurately reconstructs air temperature in that region, suggesting strong spatial generalizability.
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Figure S: Box plots of RMSE, ME, and CC for grid-modelled data of six meteorological element products and in-situ data.

For temperature variables, both Figure 5 and Figure 6 indicate minimal spatial variation, with most RMSEs, MEs, and
CCs in STZ southeastern China and MSPZ northwest China falling within the ranges of 0.49°C to 2°C, —2°C to 2°C, and
0.95 to 1.00, respectively. A few outliers, primarily located in the Tibetan Plateau, Xinjiang, and Taiwan, fall outside these
ranges. Specifically, temperature errors in Taiwan range from 3.3°C to 6°C for RMSE, —0.5°C to —4°C for ME, and 0.7 to
0.9 for CC, indicating a general underestimation of air temperature in this region. For the atmospheric pressure product,
RMSE, ME, and CC values in STZ southeastern China generally range from 0.8 hPa to 15 hPa, —5 hPa to 5 hPa, and 0.85 to
1.00, respectively. In MSPZ northwest China, most ME values range from —32 hPa to 0 hPa, indicating a slight tendency
toward underestimation. For the relative humidity product, RMSE values indicate relatively larger errors in MSPZ northwest
China, generally ranging from 8% to 12%, with a clear tendency toward underestimation, as most ME values fall between
—9.5% and 0%. This underestimation trend is less evident in the Tibetan Plateau. In the eastern half of China, errors are
smaller, with RMSE values typically ranging from 3.6% to 8% and ME values between —3% and 4%. No distinct spatial
pattern of underestimation or overestimation is observed. Similarly, CC values show no clear spatial variability across the
country, mostly ranging from 0.80 to 1.00, with only two isolated stations exhibiting lower values. For the sunshine duration
product, RMSE, ME, and CC values exhibit minimal spatial variability across China. RMSE values generally range from 1.2
h to 2.0 h, ME values from —0.4h to 0.5h, and CC values from 0.80 to 1.00. Values beyond these ranges are observed only at

a few isolated stations.
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Figure 6: Distribution maps of RMSE (a), ME (b) and CC (c) between grid-modelled data of six meteorological element products
and in-situ data.

4.3 Evaluation and comparison against existing gridded products
4.3.1 Average temperature, atmospheric pressure, relative humidity

Although 95 CMA stations were initially reserved for validating the gridded meteorological products developed in this study,
they were not used in the evaluation of CMFD 2.0 due to the lack of publicly available information on the station sources
used in its construction. This raised concerns that some or all of these CMA stations might have already contributed to the
CMFD 2.0. To avoid potential data overlap and ensure an objective and independent evaluation, these stations were excluded
from the validation analysis. Instead, observational data from 51 ground stations introduced in Sections 2.2.1, 2.2.2, and
2.2.3 were used to assess the accuracy of the reconstructed meteorological variables against CMFD 2.0. These stations
provided daily records for one to three of the following variables: average temperature (48 stations), atmospheric pressure
(25 stations), and relative humidity (29 stations). As maximum/minimum temperature and sunshine duration were largely
unavailable at these sites and not included in CMFD 2.0, the evaluation focused exclusively on the three core variables.

As shown in Figure 7, except for atmospheric pressure—where CMFD 2.0 exhibits a higher median CC value (0.96)
than this reconstructed dataset (0.87)—the gridded meteorological dataset developed in this study demonstrates generally
comparable or slightly improved performance relative to CMFD 2.0 in terms of median RMSE, ME, and correlation
coefficient across the evaluated variables. Notably, although the correlation for atmospheric pressure is marginally lower in
the dataset developed in this study, it yields substantially smaller errors, with median RMSE and ME of 3.61 hPa and —0.61
hPa for this dataset, and 17.14 hPa and 9.41 hPa for CMFD 2.0, respectively. For average temperature and relative humidity,
the two gridded products exhibit similar median CC values. However, the reconstructed dataset yields consistently lower

median RMSE and ME, suggesting slightly improved accuracy. Specifically, the values for temperature are 1.98 °C and —
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0.21 °C, compared to 2.08 °C and —0.46 °C for CMFD 2.0. For relative humidity, the corresponding values are 10.75 % and —

1.05 % for the reconstructed dataset, while CMFD 2.0 reports 11.12 % and —2.40 %.
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Figure 7: Boxplot comparison of RMSE, ME, and CC for average temperature, atmospheric pressure, and relative humidity
between CMFD 2.0 and the reconstructed dataset developed in this study.

These findings are particularly evident in high-altitude regions represented by 51 validation sites predominantly located
in the southern Tibetan Plateau and the Heihe River Basin, where the gridded fields of average temperature, atmospheric
pressure, and relative humidity developed in this study demonstrate good agreement with station observations. Compared
with CMFD 2.0, a widely used multi-source reanalysis product in China, the reconstructed dataset provides improved spatial
resolution and slightly enhanced accuracy at these alpine sites. These results suggest the potential of the dataset to support

regional-scale hydrometeorological studies in cold and topographically complex environments.

4.3.2 Sunshine duration

Figure 8 presents a comparison of sunshine duration estimates between the SSD product and the reconstructed dataset
developed in this study, evaluated using 95 validation stations. The median values of RMSE (1.48 h) and CC (0.93) are
identical for both datasets, while the ME shows only a slight difference (0.02 h for SSD and 0.05 h for the reconstructed
dataset), indicating a comparable bias level. The boxplots reveal subtle differences in distribution characteristics: the
reconstructed dataset shows slightly narrower interquartile ranges, while the SSD product exhibits fewer outliers in RMSE
and CC. Overall, the reconstructed sunshine duration dataset yields accuracy comparable to that of the SSD product, while
providing notably higher spatial resolution (1 km).

A comparative accuracy assessment of the reconstructed sunshine duration dataset was conducted using observations
from 95 CMA stations, with the SSD product serving as the benchmark. Notably, some of these validation stations may have
been assimilated during the development of the SSD product, whereas the reconstructed dataset presented in this study was
developed without incorporating any of these stations in its training phase, thereby ensuring a higher degree of independence
in validation. Although fully independent observations remain limited, the two datasets exhibit strong agreement across
RMSE, ME, and CC metrics. This consistency underscores the robustness and generalization capability of the proposed

reconstruction method. Furthermore, it demonstrates that, even under partially non-independent validation conditions, the
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reconstructed sunshine duration fields attain an accuracy level comparable to that of the benchmark product published in
Earth System Science Data, supporting their utility for mesoscale to fine-scale hydrometeorological applications in

topographically complex regions.
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Figure 8: Boxplot comparison of RMSE, ME, and CC for sunshine duration between SSD and the reconstructed dataset developed
in this study.

4.4 Influence of elevation mismatch on validation accuracy

In certain areas of the MSPZ northwest China region—particularly in Tibet and Xinjiang—the validation metrics presented
in Section 4.2 indicate relatively lower performance. To examine whether this discrepancy is related to spatial
inconsistencies between meteorological station elevations and those of the corresponding grid cells, we analyzed elevation
differences using the 1 km DEM. Specifically, elevation mismatch was calculated as the difference between the recorded
elevation of the 118 validation stations and the DEM-derived elevation of their corresponding grid cells, as shown in Figure
9. A total of 28 stations were identified where the elevation difference exceeded 50 m, marked with red numbered symbols
in Figure 9(a). These stations are primarily located in high-relief regions, and while not all lie within the Plateau Climate
Zone, that zone exhibits the largest elevation mismatches. Figure 9(b) ranks these stations by descending elevation difference,
with the maximum discrepancy of 591m observed at Station 1 (DWR: Pangduo), followed by 323m at Station 2 (CMA:

Tianshan Daxigou) in Xinjiang. To assess the influence of elevation mismatch on validation accuracy, we used the actual

longitude, latitude, and elevation of the 28 stations as inputs to the reconstruction module of the MLP-based framework. For
each station, the long-term time series of six meteorological variables—average temperature, maximum temperature,
minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—were estimated. RMSE, ME, and

CC values were then calculated by comparing these station-based estimates with the corresponding in-situ observations, and

further compared with the original grid-based validation results.
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Figure 9: Distribution of elevation differences between station elevations and corresponding DEM grid values (Red numbers mark
elevation differences greater than S50m).

Figure 10 summarizes the key findings. First, for average temperature, maximum temperature, minimum temperature,
and atmospheric pressure, the RMSE and ME between in-situ observations and station-based estimates show substantially
greater improvement than those derived from gridded estimates. Notably, the magnitude of improvement increases with
larger absolute elevation differences. While relative humidity and sunshine duration also exhibit improvements, the extent is
considerably smaller. In contrast, the CCs show modest increases across variables, though the improvement is less
pronounced than that observed in error metrics. These results confirm that the MLP-based reconstruction framework yields
more accurate estimates than the grid-based approach discussed in Section 4.2, particularly in high-altitude and
topographically complex regions.

These findings also highlight potential limitations in using in-situ station data to validate gridded meteorological
products—especially in regions with coarse spatial resolution or substantial terrain variability. As grid size increases, spatial
mismatches between stations and grid cell averages (in terms of latitude, longitude, and elevation) become more pronounced.
Even at 1 km resolution, notable elevation mismatches were observed in high-altitude areas. For variables highly sensitive to
elevation and geographic location—such as air temperature and atmospheric pressure—relying on a single station to

represent an entire grid cell can introduce significant uncertainty in complex terrain.
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Figure 10: Comparison of dotted line plots for RMSE, ME, and CC between in-situ data and station-based estimates, as well as
between in-situ data and gridded data.

4.5 Spatial distribution of meteorological elements in China at 1 km resolution

To evaluate the spatial performance and climatic representativeness of the reconstructed dataset, we analyzed the long-term
mean values of six meteorological variables at a spatial resolution of 1 km across mainland China from 1961 to 2019. The
spatial distributions show strong consistency with known climatic gradients and topographic variations, reflecting the
combined effects of latitude, elevation, and oceanic influence on regional meteorological conditions, as illustrated in Figure
11. Temperature exhibits clear spatial variation governed by both latitude and elevation. The Northern Temperate Zone and
the Plateau Climate Zone record the lowest values, with annual mean, maximum, and minimum temperatures of —3.8 °C,
4.3°C, and —11.0 °C in the Northern Temperate Zone, and —1.7 °C, 6.2 °C, and —8.3 °C in the Plateau Climate Zone. In
contrast, the Subtropical Zone records 16.1 °C, 21.3 °C, and 12.5 °C, while the Tropical Zone reaches 24.2 °C, 28.9 °C, and
21.1 °C, respectively. Atmospheric pressure strongly reflects elevation differences. While most zones maintain annual mean
values above 900 hPa, the Plateau Climate Zone shows a significantly lower pressure of approximately 608 hPa. Relative
humidity decreases from southeast to northwest, shaped by maritime influence and topographic relief. The Tropical and
Subtropical coastal zones record the highest annual mean values of 83 % and 78 %, respectively. The Northern Temperate
Zone reaches 70 %, while interior zones, including the Middle Temperate and Plateau Climate Zones, record lower values of

approximately 55 %. Sunshine duration shows an inverse pattern relative to humidity and cloudiness. The longest annual
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average sunshine durations are observed in the Qinghai—Tibet Plateau and the Middle Temperate Zone in Xinjiang and Inner
Mongolia, with 8.0 h and 7.8 h per day, respectively. In contrast, the Subtropical coastal zone receives only about 4.6 h due
to persistent cloud cover and high moisture levels.

The reconstructed spatial patterns show strong agreement with China’s climatic zonation and physiographic structure,
demonstrating that the dataset reliably captures the spatial distribution of key climate-controlling factors, including elevation,
latitude, and terrain complexity. This consistency highlights the physical soundness and regional adaptability of the
reconstruction framework, which is informed by topographic features rather than relying solely on spatial proximity. The
dataset thereby offers robust support for regional-scale analyses in hydrology, meteorology, and ecology, especially in

contexts where high spatial resolution and internal data consistency are required.
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Figure 11: Annual spatial distribution of 6 meteorological elements in China from 1961 to 2019 based on daily reconstructed
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5 Data availability

The 1km daily dataset of near-surface meteorological variables over mainland China includes air temperature (average,
maximum, and minimum) for the period 1961-2021, and atmospheric pressure, relative humidity, and sunshine duration for
the period 1961-2019. The dataset is expected to undergo ongoing maintenance and temporal extension contingent on the
availability of new observational data. The GeoTIFF-formatted output files at 1 km spatial resolution are freely accessible at

https://doi.org/10.11888/Atmos.tpdc.301341 (Zhao et al., 2024).

6 Conclusion

This study presents a nationwide, high-resolution dataset of six daily near-surface meteorological variables—average,
maximum, and minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—reconstructed at
1 km spatial resolution over mainland China for the period 1961-2019 (1961-2021 for air temperature). Instead of relying on
traditional spatial interpolation, the reconstruction framework models nonlinear relationships between meteorological
variables and topographic predictors—such as elevation, latitude, and longitude—enabling physically informed estimation
across a wide range of climatic and geographic conditions.

Validation using 118 independent meteorological stations demonstrates that the dataset achieves consistently high
accuracy across all variables. For average, maximum, and minimum temperature, the median RMSEs are 1.03 °C, 1.19 °C,
and 1.34°C, respectively; the corresponding median MEs are approximately —0.09 °C, —0.10 °C, and —0.08 °C, with
correlation coefficients equal to or greater than 0.99. Atmospheric pressure shows similarly strong performance, with a
median RMSE of 2.48 hPa, a median ME of —0.02 hPa, and a correlation coefficient of 0.98. Relative humidity and sunshine
duration also perform reliably, with median RMSEs of 6.02% and 1.48 h, MEs of —0.5% and 0.05h, and correlation
coefficients of 0.90 and 0.93, respectively. Further comparison reveals that station-to-grid validation underestimates the true
accuracy of gridded products, particularly in topographically complex regions where elevation mismatches distort point-to-
grid comparisons. In such areas, model estimates based on exact station coordinates consistently yield better validation
metrics than those derived from station-to-grid comparisons, especially for elevation-sensitive variables.

The comparative evaluation against existing gridded products further confirms the quality and robustness of the
reconstructed dataset, while complementing existing benchmark products with enhanced spatial resolution (1km),
particularly suited for heterogeneous environments. For average temperature, atmospheric pressure, and relative humidity,
the reconstructed product exhibits consistently lower RMSE and ME than CMFD 2.0 at independent validation stations, with
particularly substantial error reduction observed for atmospheric pressure. In the comparison of sunshine duration, the
reconstructed dataset achieves nearly identical accuracy to the SSD benchmark product in terms of RMSE, ME, and CC,
despite being validated using stations that may have been assimilated during the development of the SSD product.

In addition to its high overall accuracy, the dataset demonstrates stable spatial performance across China’s major

climatic zones. Temperature and pressure variables maintain low RMSEs and strong correlations in both humid southeastern
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and arid northwestern regions, with most temperature RMSEs, MEs, and CCs falling within the ranges of 0.49 °C to 2 °C,
—2°Cto 2 °C, and 0.95 to 1.00, respectively. Relative humidity and sunshine duration show limited spatial variability, with
only a few isolated stations displaying notable deviations. Even in data-sparse regions like Taiwan—excluded from model
training—the reconstructed temperature fields align reasonably well with in-situ observations, indicating the dataset’s spatial
robustness beyond the training domain.

The dataset provides spatially continuous, temporally complete, and variable-accurate daily meteorological records,

supporting a wide range of regional-scale applications in hydrology, meteorology, and ecology.
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