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Abstract. Fine-resolution and high-accuracy meteorological datasets are essential for understanding climate change 

processes and their cascading impacts on hydrology, water resources management, and ecological systems. In this study, we 

present a nationwide, high-resolution dataset of six daily meteorological variables across China from 1961 to 2021, including 

average temperature, maximum temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine 

duration. The dataset was generated through a hierarchical reconstruction framework that utilizes daily observations from 15 

2345 meteorological stations across China, combined with station-level topographic attributes (latitude, longitude, and 

elevation). By decoding the nonlinear relationships among six meteorological variables and their spatial covariates, the 

framework enables the generation of gridded daily fields at 1 km resolution with spatial continuity and internal consistency . 

Validation against 118 in-situ stations confirms that the dataset achieves high accuracy across all variables, with average, 

maximum, and minimum temperatures exhibiting minimal errors (median RMSEs: 1.03°C, 1.19°C, 1.34°C; median MEs: -20 

0.09°C, -0.10°C, -0.08°C) and high consistency with in-situ data (median CCs: 1.00, 0.99, 0.99). Atmospheric pressure 

shows minimal error (median RMSE: 2.48 hPa; median ME: -0.02 hPa) and high consistency (median CC: 0.98). Although 

relative humidity has slightly weaker accuracy (median RMSE: 6.02%; median ME: -0.5%; median CC: 0.90), it still 

surpasses standard benchmarks. Sunshine duration maintains high precision (median RMSE: 1.48 h; median ME: 0.05 h; 

median CC: 0.93), demonstrating overall excellent product quality. Further comparison reveals that in high-altitude and 25 

topographically complex regions, the reconstructed product demonstrates higher actual accuracy than suggested by station-

to-grid validation, as spatial mismatches between stations and grid cells lead to systematic underestimation.  Free access to 

the dataset available at https://doi.org/10.11888/Atmos.tpdc.301341 or https://cstr.cn/18406.11.Atmos.tpdc.301341. 

1 Introduction 

With advances in computational power and remote sensing technologies, hydrological modeling has increasingly evolved 30 

toward fully distributed simulations, while climate change research continues to expand across broader spatial and temporal 

https://doi.org/10.5194/essd-2025-291
Preprint. Discussion started: 30 June 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

scales. These developments have placed growing demands on the resolution and accuracy of basic meteorological inputs, 

particularly in ungauged and topographically complex basins such as the Tibetan Plateau. High-resolution and high-quality 

meteorological datasets are essential for capturing fine-scale climate signals, representing land–atmosphere interactions, and 

supporting hydrological, ecological, and environmental assessments. 35 

In recent decades, a wide range of meteorological and environmental variables—such as land and sea surface 

temperatures, precipitation (King et al., 2003), vegetation indices (Zeng et al., 2022), soil moisture (Brocca et al., 2017), air 

quality (Martin, 2008), and carbon emissions (Wunch et al., 2017) —have been derived from remote sensing observations 

and data assimilation systems. These satellite-based products offer broad spatial coverage and long-term continuity, enabling 

significant advances in water resources monitoring and drought-related climate assessment, particularly in data-scarce 40 

regions (Sheffield et al., 2018). However, despite their strengths, such products often struggle to represent near-surface 

meteorological conditions with sufficient precision. Their performance is typically constrained by atmospheric interference, 

cloud contamination, and limited spatial resolution—factors that become particularly problematic in regions with highly 

variable terrain. As a result, many satellite-derived datasets fail to meet the spatial and temporal requirements of land surface 

modeling, hydrological forecasting, and local-scale climate analysis. To mitigate these limitations, assimilation-based 45 

approaches have been increasingly adopted to integrate satellite data, reanalysis fields, and ground-based observations for 

near-surface meteorological forcing generation (Rodell et al., 2004; Laiolo et al., 2015; Liu et al., 2019; Khaki et al., 2020). 

While these efforts improve data consistency and spatial completeness, significant uncertainties remain—especially in areas 

like western China, where rugged topography and sparse station distribution pose persistent challenges (Gao and Liu, 2013; 

Yang et al., 2013; Wang et al., 2016; Tang et al., 2016; Qi et al., 2018). These limitations underscore the pressing need for 50 

regionally tailored, high-resolution meteorological datasets that are capable of capturing local climatic variability and 

supporting reliable simulation in hydrological modeling, drought risk forecasting, and water resources management. 

Recent efforts to generate gridded meteorological forcing datasets in China have primarily followed three 

methodological approaches. The first approach is based on spatial interpolation of in-situ station data to generate gridded 

fields (Li, 2008). However, interpolation methods that do not explicitly account for topographic complexity and 55 

environmental gradients often yield limited accuracy, particularly in mountainous regions (Li and Heap, 2011; Yu et al., 

2015; Yang and Xing, 2021). To improve spatial realism, elevation-dependent interpolation schemes have been applied to 

reconstruct precipitation and temperature in regions such as the Heihe River Basin, the Tibetan Plateau, and the headwaters 

of the Yangtze and Yellow Rivers (Wang et al., 2017; Sun and Su, 2020; Zhao et al., 2022; Zhang et al., 2024). The second 

approach involves spatial downscaling and multi-source data fusion. This includes deriving high-resolution fields from 60 

coarse-resolution reanalysis or climate datasets, or combining satellite, reanalysis, and station data to reconstruct near -

surface meteorological variables. For instance, Li et al. (2014) employed a two-step interpolation method to generate 1 km 

gridded datasets of air temperature, pressure, humidity, and wind speed across China. Peng et al. (2019) produced monthly 

gridded temperature and precipitation data for 1901–2017 using delta downscaling applied to CRU and WorldClim inputs. 

He et al. (2020) developed the China Meteorological Forcing Dataset (CMFD), which integrates observations from over 65 
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1,000 stations with GLDAS and MERRA reanalysis products to provide daily meteorological variables at 0.1° resolution. 

Zhao et al. (2022) further enhanced precipitation accuracy over the Yarlung Zangbo Basin by correcting and merging 

multiple satellite precipitation products with in-situ records. The third approach draws upon machine learning techniques to 

model complex relationships between meteorological variables and spatial covariates. Global satellite-derived precipitation 

products such as CMORPH (Joyce et al., 2004; Xie et al., 2017) and PERSIANN(Sorooshian et al., 2014; Sadeghi et al., 70 

2019) exemplify early use of neural networks for rainfall estimation. In the Chinese context, recent studies—including those 

by Wu et al. (2020), Hong et al.(2021), and Jing et al. (2022) —have applied deep learning models to improve the spatial 

resolution and accuracy of multi-source precipitation datasets. For temperature, Pang et al. (2017) evaluated machine 

learning methods for downscaling daily mean temperature in the Pearl River Basin using global climate model outputs. 

Zhang et al. (2021) showed that a gradient boosting approach outperformed traditional reanalysis datasets such as JRA-55 75 

and ERA-Interim over the Tibetan Plateau. He et al. (2022) applied Gaussian process regression to generate the 

GPRChinaTemp1km dataset, a 1 km resolution monthly temperature product for 1951–2020. However, the development of 

machine learning-based gridded products for other meteorological variables—such as atmospheric pressure, humidity, 

sunshine duration, and wind speed—remains limited and warrants further research (Li and Zha, 2018; Liu et al., 2022).  

The objective of this study is to develop a high-resolution and accuracy-assessed dataset of daily near-surface 80 

meteorological variables across mainland China, suitable for applications in hydrological modeling, environmental 

monitoring, and climate analysis. To achieve this, a hierarchical and progressive reconstruction framework was implemented 

to generate gridded fields of six variables—average, maximum, and minimum air temperature, atmospheric pressure, relative 

humidity, and sunshine duration. These variables were reconstructed at approximately 2 meters above ground level at a 

spatial resolution of 1 km, and the framework allows for adaptation to other spatial scales supported by the digital elevation 85 

model (DEM). A multilayer perceptron (MLP) regression model was used to capture nonlinear relationships between station 

observations and topographic predictors (e.g., latitude, longitude, and elevation), enabling fine-scale reconstruction across 

complex terrain.  

2 Materials 

2.1 Training and validation data from CMA 90 

Daily records of meteorological variables—including longitude, latitude, elevation, average temperature, maximum 

temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—were obtained from 

2,440 meteorological stations operated by the China Meteorological Administration (CMA) for the period 1961–2021. To 

support independent model validation, a total of 95 stations were selected as evaluation sites based on three principles: (1) 

ensuring geographical representativeness in terms of longitude, latitude, and elevation; (2) in densely monitored areas such 95 

as eastern China, a greater number of evaluation stations were retained without significantly reducing the size of the traini ng 
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dataset; and (3) in sparsely monitored regions such as western China (including Tibet and Xinjiang), fewer stations were 

assigned to the evaluation set in order to preserve sufficient data for model training. The remaining 2,345 stations were used 

exclusively for training purposes. The spatial distribution of both training and evaluation stations is shown in Figure 1. 

 100 

Figure 1: The spatial distribution of training and evaluation meteorological stations in China. 

For the years 2020 and 2021, daily records are limited to air temperature, as measurements of atmospheric pressure, 

relative humidity, and sunshine duration are unavailable during this period. Due to variations in the temporal coverage of 

individual stations, the amount of available daily data for model training and evaluation also differs across sites. The 

temporal distribution of operational meteorological stations from 1961 to 2021 is presented in Figure 2. 105 

 

Figure 2: The spatial distribution of training and evaluation meteorological stations in China. 
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2.2 Validation data from supplementary ground-based observations 

2.2.1 Ground observations provided by DWR 

To address the limited spatial coverage of validation stations in the Tibet region, daily average temperature observations 110 

from 12 ground-based meteorological stations were obtained from the Department of Water Resources (DWR). These 

supplementary data enhance the robustness of model evaluation in western China. The locations of the DWR stations are 

shown in Figure 1, and metadata for each station are provided in Table 1. 

Table 1: Detailed information on records from DWR ground-based meteorological observation stations. 

Number Station Name Station Type Time Range Element Type 

1 Nugesha Meteorological  2001.1.1~2003.12.31 

Average temperature 

2 Yangcun Meteorological 2001.1.1~2003.12.31 

3 Nuxia Meteorological 2001.1.1~2003.12.31 

4 Jiangzi Meteorological 2001.1.1~2001.12.31 

5 Rikaze Meteorological 2001.1.1~2001.12.31 

6 Pangduo Meteorological 2001.1.1~2003.12.31 

7 Tangjia Meteorological 2001.1.1~2003.12.31 

8 Lhasa Meteorological 2001.1.1~2003.12.31 

9 Yangbajing Meteorological 2001.1.1~2003.12.31 

10 Gongbujiangda Meteorological 2001.1.1~2003.12.31 

11 Gengzhang Meteorological 2001.1.1~2003.12.31 

12 Bayi Water Level 2001.1.1~2003.5.31 

2.2.2 Literature-based datasets from the National Tibetan Plateau Data Center 115 

To supplement observational data for the evaluation of gridded meteorological products, a variety of station-based datasets 

were obtained from the National Tibetan Plateau Data Center (TPDC, http://data.tpdc.ac.cn) , as represented by the blue flag 

symbols in Figure 1. These include: (1) a publicly available dataset of hourly land–atmosphere interaction observations from 

12 field stations (Ma et al., 2024) , covering the period 2005–2021, from which 2 stations were selected after quality control 

for use as independent validation sites; (2) data from 18 stations within the HiWATER hydrometeorological observation 120 

network in the upper reaches of the Heihe River Basin (Liu et al., 2018; Che et al., 2019); and (3) additional station-based 

records from 11 individual stations, including 2 stations from Zhang (2018a, 2018b); 3 stations from Gao (2018); 2 stations 

from Luo (2019);  and 1 station each from Ma (2018), Wang and Wu (2019), Luo and Zhu (2020), and Meng and Li (2023). 

2.2.3 Validation data from GSOD 

The Global Surface Summary of Day (GSOD) dataset, compiled by the National Centers for Environmental Information 125 

(NCEI), is based on international data exchanges conducted under the World Meteorological Organization (WMO) World 
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Weather Watch Program. This dataset provides daily summaries of 18 surface meteorological variables from more than 

9,000 global stations, with records available from 1929 to the present. Observation data from eight meteorological stations in 

the Taiwan region were obtained from the NCEI online archive (https://www.ncei.noaa.gov/access/search/data-

search/global-summary-of-the-day) and processed for use in validation. Detailed metadata and data availability for these 130 

stations are summarized in Table 2. 

Table 2: Detailed meteorological data from 8 meteorological stations of Taiwan Region. 

Number Station name Time range Element Type 

1 TAINAN 593580 1973.1.7~1998.12.31 

Average temperature, 

maximum temperature, 

minimum temperature 

2 SUNGSHAN 1961.1.1~2021.12.31 

3 TANSHUI 1973.1.7~1977.10.31 

4 ILAN CITY 1973.1.7~1998.12.31 

5 TAIBEI 1973.1.1~1998.12.31 

6 TAINAN 1961.1.1~2021.12.31 

7 TAOYUAN 1961.1.1~1999.7.26 

8 
KAOHSIUNG 

INTERNATIONAL 
1973.1.1~2021.12.31 

2.3 Static geospatial input: SRTM DEM (1km) 

The Digital Elevation Model (DEM) provides high-resolution geographic information—including longitude, latitude, 

and elevation—that is required for the spatial reconstruction of meteorological variables. In this study, the DEM was used as 135 

an essential input for the reconstruction model to ensure spatial consistency and accuracy. Although the model supports 

flexible output resolutions, a spatial resolution of 1 km was selected to balance computational efficiency and data detail. The 

DEM used herein was derived by resampling the latest version of the Shuttle Radar Topography Mission (SRTM) data 

(version 4.1), as provided by the Consortium for Spatial Information of the CGIAR (Jarvis et al., 2008).  

2.4 Climate regionalization map of China 140 

The Climate Regionalization Map of China, compiled by the China Meteorological Administration in 1978 using climate 

data from 1951 to 1970, divides the country into nine climatic zones. The dataset is publicly available via the Resource and 

Environmental Science Data Platform (https://www.resdc.cn/). For the purpose of comparative analysis of regional climatic 

patterns, the four subtropical zones—Northern Subtropical, Middle Subtropical, Southern Subtropical, and Southern 

Subtropical—were merged into a single Subtropical Zone. The revised classification scheme consists of six zones: Plateau 145 

Climate Zone, Northern Temperate Zone, Middle Temperate Zone, Southern Temperate Zone, Subtropical Zone, and Middle 

Tropical Zone, as illustrated in Figure 1. 
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2.5 Existing gridded products for comparison 

To assess the reliability and application potential of the reconstructed meteorological variables, representative and widely 

used gridded datasets were selected for comparison based on their scientific relevance and availability.  Specifically, for 150 

average temperature, atmospheric pressure, and relative humidity, we employed the latest version of the China 

Meteorological Forcing Dataset (CMFD 2.0), whose earlier versions have been extensively used in land surface, 

hydrological, and ecological modeling over China (He et al., 2020). As CMFD 2.0 currently does not include sunshine 

duration, the Homogenized Daily Sunshine Duration (SSD) dataset developed by He et al. (2025) was additionally 

incorporated to enable comparative evaluation of the spatial and temporal consistency of sunshine-related variables. Given 155 

the scarcity of publicly available sunshine duration datasets, the SSD provides a valuable reference for national -scale 

assessments over China. 

The CMFD 2.0 (He et al., 2024) provides high-resolution (0.1°), 3-hourly gridded meteorological data for the period 

1951–2020, covering the land area between 70°E–140°E and 15°N–55°N. It includes near-surface temperature, surface 

pressure, specific humidity, wind speed, radiation, and precipitation. Compared to previous versions, CMFD 2.0 incorporates 160 

ERA5 reanalysis and station observations through updated data sources and artificial intelligence techniques, particularly for 

radiation and precipitation variables. It also introduces metadata on station relocations and expands the spatial coverage 

beyond China's borders, thereby improving temporal consistency and cross-regional applicability. 

The SSD dataset (He, 2024) offers spatially continuous and temporally consistent records of daily sunshine duration 

across China from 1961 to 2022, at a spatial resolution of 2.0° × 2.0°. It was developed using observations from more than 165 

2,200 meteorological stations and addresses inhomogeneities in the raw records caused by non-climatic factors, including 

nationwide station relocations and the widespread transition from manual to automatic instruments in 2019. 

3 Methodology  

3.1 MLP-based hierarchical progressive reconstruction framework 

The reconstruction of near-surface meteorological fields in this study is based on multilayer perceptron (MLP) models—a 170 

class of deep feedforward neural networks capable of capturing complex nonlinear relationships through layered 

transformations (Bisong, 2019). Each MLP consists of an input layer, multiple hidden layers, and an output layer, and is 

trained using a two-phase process: feedforward propagation, in which input data are transmitted through the network to 

produce predictions, and backpropagation, during which model parameters are iteratively adjusted to minimize prediction 

errors. This learning mechanism enables MLPs to extract spatial and statistical patterns from high-dimensional data while 175 

maintaining strong generalization capability. Owing to these characteristics, MLPs have been successfully applied in diverse 

domains such as medical diagnostics (Karayilan and Kilic, 2017; Desai and Shah, 2021), finance (Duan, 2019; Weytjens et 

al., 2021), and hydrology (Singh et al., 2012; Choubin et al., 2016; Ren et al., 2020). 
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In this study, MLP models serve as the computational foundation of the hierarchical progressive reconstruction 

framework developed to generate high-resolution, spatially complete datasets of near-surface meteorological variables. This 180 

framework is designed to address both variable interdependence and geographic heterogeneity by reconstructing each target 

variable sequentially using a tailored set of spatial and meteorological predictors. As illustrated in Figure 3, it consists of two 

functional modules: a training module and a reconstruction module. The training module learns nonlinear spatial mapping 

functions from in-situ station data, capturing daily spatial patterns across complex terrain. The reconstruction module then 

applies the trained parameters to gridded predictor layers to generate continuous spatial fields at the desired resolution. To 185 

ensure both the accuracy and feasibility of the reconstruction, input features are selected based on their relevance to the 

spatial distribution of each variable and the availability of high-resolution gridded data. Topographic predictors (latitude, 

longitude, and elevation) are used consistently throughout the framework, while previously reconstructed meteorological 

variables are incorporated as auxiliary inputs in subsequent steps. 

The hierarchical reconstruction framework comprises four sequential steps, each targeting a specific meteorological 190 

variable—(a) air temperature, (b) atmospheric pressure, (c) relative humidity, and (d) sunshine duration. This ordering is 

guided by both physical dependencies and statistical considerations, allowing upstream variables to serve as essential inputs 

for reconstructing downstream variables. In the first step, air temperature is reconstructed using only geographic 

predictors—longitude, latitude, and elevation. Although solar radiation and land surface characteristics, which fundamentally 

shape temperature patterns, are not explicitly included (Peixoto and Oort, 1992; Hartmann, 2016), these geographic features 195 

serve as effective proxies for capturing dominant spatial gradients. In the second step, atmospheric pressure is modeled using 

a three-layer MLP, incorporating geographic variables and temperature. Atmospheric pressure is jointly determined by air 

density and gravitational acceleration, both of which vary with temperature and elevation due to their effects on the 

atmospheric hydrostatic balance (Mason et al., 2016). Including temperature as a predictor thus improves the model’s ability 

to reproduce its spatial variability. The third step addresses relative humidity, modeled using a four-layer MLP with 200 

geographic predictors, temperature, and atmospheric pressure as inputs. Relative humidity depends on both actual and 

saturation vapor pressures (Wallace and Hobbs, 2006; Mason et al., 2016) ; the former is partially influenced by atmospheric 

pressure, while the latter is primarily governed by temperature and increases exponentially according to the Clausius–

Clapeyron relationship. Incorporating both temperature and pressure enhances the model’s ability to capture the complex 

spatial behavior of humidity. Building on the preceding steps, the final reconstruction targets sunshine duration, which is 205 

influenced by the combined effects of the solar astronomical position, atmospheric radiative processes, and synoptic -scale 

weather systems. According to WMO (2023), sunshine duration is defined as the total time during which direct solar 

irradiance exceeds 120 W/m². Geographic predictors provide the spatial context, while temperature, pressure, and humidity 

reflect dynamic atmospheric states and cloud-related feedbacks. These variables are physically grounded and observationally 

accessible. A four-layer MLP model is therefore employed in the final step to reconstruct the spatial distribution of sunshine 210 

duration.  
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Figure 3: MLP-based hierarchical progressive reconstruction framework for China. 

Overall, this progressive framework ensures that each reconstruction step is informed by physically meaningful and 

context-specific predictors. By integrating the hierarchical dependencies among meteorological variables, the approach 215 

yields spatially complete and physically consistent gridded datasets suitable for large-scale climate and environmental 

applications. 

3.2 Evaluation metrics 

In this study, four evaluation metrics were employed: Mean Error (ME), Mean Squared Error (MSE), Root Mean Square 

Error (RMSE), and Correlation Coefficient (CC). These metrics were utilized in two distinct phases: the MLP model training 220 

phase and the meteorological products evaluation phase. The formulas for the four metrics are as follows: 

𝑀𝐸 =
1

𝑛
∑(𝑌𝑡 − 𝑌𝑡̂)

𝑛

𝑡=1

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑡 − 𝑌𝑡̂)

2
𝑛

𝑡=1
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𝐶𝐶 =
∑ (𝑌𝑡 − 𝑌)(𝑌𝑡̂ − 𝑌̂)𝑛
𝑡=1

√∑ (𝑌𝑡 − 𝑌)
2

𝑛
𝑡=1

√∑ (𝑌𝑡̂ − 𝑌̂)
2

𝑛
𝑡=1

 225 

Where 𝑛 is the total number of days in the time series; 𝑡 stands for the 𝑡-th day; 𝑌𝑡 and 𝑌 stand for the in-situ value of 

the target variable and the mean in-situ value of the target variable, respectively; and 𝑌𝑡̂ and 𝑌̂ stand for the model's estimated 

value and the mean estimated value, respectively. 

During the training phase, MSE was used as the loss function to measure and optimize the performance of the MLP 

model. Upon completion of the training, ME and CC were computed between the estimated outputs—derived from the 230 

model parameters at the optimal training state— and in-situ records of the target variable, with particular emphasis on CC to 

ensure comprehensive model performance evaluation. If the MSE was low but the CC was poor, the hyperparameters of the 

deep learning model were adjusted, and training continued until satisfactory results were achieved. 

In the subsequent evaluation phase of the meteorological reconstruction products, RMSE, ME, and CC were calculated 

between in-situ records and corresponding grid estimates. These metrics effectively validated the accuracy and reliability of 235 

the reconstruction products, confirming discrepancies with the observed data. 

4 Results and discussion   

4.1 MLP training and test results 

To evaluate the generalization capability of the reconstruction models and prevent overfitting, we randomly assigned 10% of 

the daily in-situ observations from 1961 to 2021 to the test dataset using a fixed random seed, with the remaining 90% used 240 

for training. Figure 4 presents the performance metrics of the daily MLP models across six meteorological variables: average 

temperature, maximum temperature, minimum temperature, atmospheric pressure, relative humidity, and sunshine duration. 

Three standard evaluation metrics are used: ME (Figure 4(a)), MSE (Figure 4(b)), and CC (Figure 4(c)). The mean values of 

all metrics are highly consistent between training and test phases, indicating strong generalization and no evidence of 

overfitting. These results confirm the stability and precision of the deep learning-based hierarchical progressive 245 

reconstruction framework. Notable deviations across all metrics are limited to a very small number of days and are primarily 

attributed to substantial gaps in the in-situ observations. 
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 250 

Figure 4: Line graphs of metrics (MSE, ME, CC) for optimal parameters in daily training and testing of MLP models from 1961 to 

2021. 

The ME values are close to zero for all variables in both phases. Specifically, the mean ME for maximum and minimum 

temperatures is exactly 0 °C, while the other four variables also show near-zero mean errors, with at least one phase yielding 

a mean ME of 0. The range of ME values is also narrow. During training, ME ranges from –0.49 °C to 0.46 °C for average 255 

temperature, –3.55 hPa to 2.61 hPa for atmospheric pressure, –2.15% to 1.96% for relative humidity, and –0.54 h to 0.50 h 

for sunshine duration. The test phase exhibits even narrower ME ranges: –0.32 °C to 0.36 °C (average temperature), –2.25 

hPa to 1.94 hPa (atmospheric pressure), –1.83% to 1.49% (relative humidity), and –0.42 h to 0.41 h (sunshine duration). 

These results suggest minimal systematic bias in the model predictions across all variables. The MSE, which emphasizes the 

impact of large residuals by squaring the error magnitude, consistently exceeds the ME across all variables. As shown in 260 

Figure 4(b), the daily MSE values are low in both phases, with only a slight increase in the test phase.  Temperature-related 

variables—including average, maximum, and minimum temperature—exhibit low and stable MSE values, with means below 

1 °C² and only minor differences (typically 0.1 °C²–0.3 °C²) between training and test phases. This indicates that the model 

captures temperature dynamics with high accuracy and strong generalization.  For atmospheric pressure, which inherently 

exhibits a larger numerical scale, the mean MSE values remain relatively low—6.9 hPa² in the training phase and 8.5 hPa² in 265 

the test phase. Notably elevated MSE values are observed only on a few days in 1961, primarily due to substantial gaps in 

the observed atmospheric pressure records. Relative humidity and sunshine duration also show consistently low error levels, 

with training phase MSEs of 14.1 %² and 1.2 h², and slightly higher values of 20.7 %² and 1.8 h² in testing phase. Analysis of 

the CC value indicates strong agreement between model estimates and observed values across all variables. Notably, 

atmospheric pressure achieves perfect agreement, with a mean CC of 1.00 in both phases. Average, maximum, and minimum 270 

temperatures also show consistently high correlations, with mean CCs of 0.98, 0.98, and 0.99 in the training phase, and 0.97, 
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0.97, and 0.98 in the testing phase. Although the CCs for relative humidity and sunshine duration are slightly lower, they 

remain strong—0.94 and 0.91 in training, and 0.92 and 0.87 in testing, respectively.  

Collectively, the results highlight the proposed framework’s ability to accurately identify and reconstruct the spatial 

structures of diverse meteorological variables, demonstrating strong generalization across different element types and 275 

conditions. 

4.2 Validation of gridded meteorological element products using in-situ data 

An independent validation was conducted using long-term in-situ records from 118 meteorological stations, as described in 

Sections 2.1 and 2.2. These stations were entirely excluded from the model training and testing phases, and their 

observations served as reference data for an objective evaluation of the reconstructed products’ accuracy and spatial 280 

generalizability. The validation results confirm that the reconstructed meteorological products achieve high overall accuracy, 

with particularly strong performance in regions with dense training data. Notably, even in areas with sparse or absent 

observations—such as northwestern China and Taiwan—the model maintains stable and reliable performance, indicating 

strong spatial generalizability and a capacity to extrapolate beyond the training domain. This highlights the potential of the 

proposed framework for broad application in diverse climatic and geographic settings. Model performance was quantified by 285 

calculating RMSE, ME, and CC between the 1 km gridded estimates and the corresponding station observations. The 

evaluation metrics were visualized through box plots (Figure 5) and spatial distribution maps (Figures 6). 

As shown in the box plots of RMSE, ME, and CC (Figure 5), the reconstructed products for average, maximum, and 

minimum air temperature exhibit minimal errors and excellent consistency with in-situ observations. Median RMSEs are 

1.03°C, 1.19°C, and 1.34°C, respectively; median MEs are close to zero (−0.09°C, −0.10°C, and −0.08°C); and median CCs 290 

are exceptionally high (1.00, 0.99, and 0.99). Despite its inherently larger magnitude, atmospheric pressure also 

demonstrates high precision, with a median RMSE of 2.48 hPa, ME of −0.02 hPa, and CC of 0.98.  In comparison, the 

relative humidity product shows moderately lower agreement with observations, reflected in a median RMSE of 6.02%, ME 

of −0.5%, and CC of 0.90. However, since it is primarily used as an input for the reconstruction of sunshine duration, its 

effect on overall model performance is limited. Indeed, the sunshine duration product demonstrates higher accuracy, with a 295 

median RMSE of 1.48 h, ME of 0.05 h, and CC of 0.93. Although relative humidity exhibits slightly weaker performance 

than other variables, its accuracy still exceeds typical benchmarks and remains suitable for practical applications. 

The spatial distribution of RMSE, ME, and CC for all six meteorological variables is further illustrated in Figures 6. 

Consistent with expectations, the Subtropical and Southern Temperate Zones in southeastern China (STZ-southeastern China) 

display the best performance across all variables, largely due to the high density of training stations in these regions. In 300 

contrast, performance metrics are relatively lower in the Middle Temperate, Southern Temperate, and Plateau Climate Zones 

of northwestern China (MSPZ–northwest China), as well as in Taiwan, where no stations were included in training. 

Nevertheless, model performance in these regions remains robust. Notably, despite the absence of training data in Taiwan, 

the MLP model accurately reconstructs air temperature in that region, suggesting strong spatial generalizability.  
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 305 

Figure 5: Box plots of RMSE, ME, and CC for grid-modelled data of six meteorological element products and in-situ data. 

For temperature variables, both Figure 5 and Figure 6 indicate minimal spatial variation, with most RMSEs, MEs, and 

CCs in STZ southeastern China and MSPZ northwest China falling within the ranges of 0.49°C to 2°C, −2°C to 2°C, and 

0.95 to 1.00, respectively. A few outliers, primarily located in the Tibetan Plateau, Xinjiang, and Taiwan, fall outside these 

ranges. Specifically, temperature errors in Taiwan range from 3.3°C to 6°C for RMSE, −0.5°C to −4°C for ME, and 0.7 to 310 

0.9 for CC, indicating a general underestimation of air temperature in this region. For the atmospheric pressure product, 

RMSE, ME, and CC values in STZ southeastern China generally range from 0.8 hPa to 15 hPa, −5 hPa to 5 hPa, and 0.85 to 

1.00, respectively. In MSPZ northwest China, most ME values range from −32 hPa to 0 hPa, indicating a slight tendency 

toward underestimation. For the relative humidity product, RMSE values indicate relatively larger errors in MSPZ northwest 

China, generally ranging from 8% to 12%, with a clear tendency toward underestimation, as most ME values fall between 315 

−9.5% and 0%. This underestimation trend is less evident in the Tibetan Plateau. In the eastern half of China, errors are 

smaller, with RMSE values typically ranging from 3.6% to 8% and ME values between −3% and 4%. No distinct spatial 

pattern of underestimation or overestimation is observed. Similarly, CC values show no clear spatial variability across the 

country, mostly ranging from 0.80 to 1.00, with only two isolated stations exhibiting lower values. For the sunshine duration 

product, RMSE, ME, and CC values exhibit minimal spatial variability across China. RMSE values generally range from 1.2 320 

h to 2.0 h, ME values from −0.4h to 0.5h, and CC values from 0.80 to 1.00. Values beyond these ranges are observed only at 

a few isolated stations. 
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 325 

Figure 6: Distribution maps of RMSE (a), ME (b) and CC (c) between grid-modelled data of six meteorological element products 

and in-situ data. 

4.3 Evaluation and comparison against existing gridded products 

4.3.1 Average temperature, atmospheric pressure, relative humidity 

Although 95 CMA stations were initially reserved for validating the gridded meteorological products developed in this study, 330 

they were not used in the evaluation of CMFD 2.0 due to the lack of publicly available information on the station sources 

used in its construction. This raised concerns that some or all of these CMA stations might have already contributed to the 

CMFD 2.0. To avoid potential data overlap and ensure an objective and independent evaluation, these stations were excluded 

from the validation analysis. Instead, observational data from 51 ground stations introduced in Sections 2.2.1, 2.2.2, and 

2.2.3 were used to assess the accuracy of the reconstructed meteorological variables against CMFD 2.0. These stations 335 

provided daily records for one to three of the following variables: average temperature (48 stations), atmospheric pressure 

(25 stations), and relative humidity (29 stations). As maximum/minimum temperature and sunshine duration were largely 

unavailable at these sites and not included in CMFD 2.0, the evaluation focused exclusively on the three core variables. 

As shown in Figure 7, except for atmospheric pressure—where CMFD 2.0 exhibits a higher median CC value (0.96) 

than this reconstructed dataset (0.87)—the gridded meteorological dataset developed in this study demonstrates generally 340 

comparable or slightly improved performance relative to CMFD 2.0 in terms of median RMSE, ME, and correlation 

coefficient across the evaluated variables. Notably, although the correlation for atmospheric pressure is marginally lower in 

the dataset developed in this study, it yields substantially smaller errors, with median RMSE and ME of 3.61 hPa and –0.61 

hPa for this dataset, and 17.14 hPa and 9.41 hPa for CMFD 2.0, respectively. For average temperature and relative humidity, 

the two gridded products exhibit similar median CC values. However, the reconstructed dataset yields consistently lower 345 

median RMSE and ME, suggesting slightly improved accuracy. Specifically, the values for temperature are 1.98 °C and –
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0.21 °C, compared to 2.08 °C and –0.46 °C for CMFD 2.0. For relative humidity, the corresponding values are 10.75 % and –

1.05 % for the reconstructed dataset, while CMFD 2.0 reports 11.12 % and –2.40 %.  

 

Figure 7: Boxplot comparison of RMSE, ME, and CC for average temperature, atmospheric pressure, and relative humidity 350 
between CMFD 2.0 and the reconstructed dataset developed in this study. 

These findings are particularly evident in high-altitude regions represented by 51 validation sites predominantly located 

in the southern Tibetan Plateau and the Heihe River Basin, where the gridded fields of average temperature, atmospheric 

pressure, and relative humidity developed in this study demonstrate good agreement with station observations. Compared 

with CMFD 2.0, a widely used multi-source reanalysis product in China, the reconstructed dataset provides improved spatial 355 

resolution and slightly enhanced accuracy at these alpine sites. These results suggest the potential of the dataset to suppor t 

regional-scale hydrometeorological studies in cold and topographically complex environments. 

4.3.2 Sunshine duration 

Figure 8 presents a comparison of sunshine duration estimates between the SSD product and the reconstructed dataset 

developed in this study, evaluated using 95 validation stations. The median values of RMSE (1.48 h) and CC (0.93) are 360 

identical for both datasets, while the ME shows only a slight difference (0.02 h for SSD and 0.05 h for the reconstructed 

dataset), indicating a comparable bias level. The boxplots reveal subtle differences in distribution characteristics: the 

reconstructed dataset shows slightly narrower interquartile ranges, while the SSD product exhibits fewer outliers in RMSE 

and CC. Overall, the reconstructed sunshine duration dataset yields accuracy comparable to that of the SSD product, while 

providing notably higher spatial resolution (1 km). 365 

A comparative accuracy assessment of the reconstructed sunshine duration dataset was conducted using observations 

from 95 CMA stations, with the SSD product serving as the benchmark. Notably, some of these validation stations may have 

been assimilated during the development of the SSD product, whereas the reconstructed dataset presented in this study was 

developed without incorporating any of these stations in its training phase, thereby ensuring a higher degree of independence 

in validation. Although fully independent observations remain limited, the two datasets exhibit strong agreement across 370 

RMSE, ME, and CC metrics. This consistency underscores the robustness and generalization capability of the proposed 

reconstruction method. Furthermore, it demonstrates that, even under partially non-independent validation conditions, the 
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reconstructed sunshine duration fields attain an accuracy level comparable to that of the benchmark product published in 

Earth System Science Data, supporting their utility for mesoscale to fine-scale hydrometeorological applications in 

topographically complex regions. 375 

 

Figure 8: Boxplot comparison of RMSE, ME, and CC for sunshine duration between SSD and the reconstructed dataset developed 

in this study. 

4.4 Influence of elevation mismatch on validation accuracy 

In certain areas of the MSPZ northwest China region—particularly in Tibet and Xinjiang—the validation metrics presented 380 

in Section 4.2 indicate relatively lower performance. To examine whether this discrepancy is related to spatial 

inconsistencies between meteorological station elevations and those of the corresponding grid cells, we analyzed elevation 

differences using the 1 km DEM. Specifically, elevation mismatch was calculated as the difference between the recorded 

elevation of the 118 validation stations and the DEM-derived elevation of their corresponding grid cells, as shown in Figure 

9. A total of 28 stations were identified where the elevation difference exceeded 50 m, marked with red numbered symbols 385 

in Figure 9(a). These stations are primarily located in high-relief regions, and while not all lie within the Plateau Climate 

Zone, that zone exhibits the largest elevation mismatches. Figure 9(b) ranks these stations by descending elevation difference, 

with the maximum discrepancy of 591m observed at Station 1 (DWR: Pangduo), followed by 323m at Station 2 (CMA: 

Tianshan Daxigou) in Xinjiang. To assess the influence of elevation mismatch on validation accuracy, we used the actual 

longitude, latitude, and elevation of the 28 stations as inputs to the reconstruction module of the MLP-based framework. For 390 

each station, the long-term time series of six meteorological variables—average temperature, maximum temperature, 

minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—were estimated. RMSE, ME, and 

CC values were then calculated by comparing these station-based estimates with the corresponding in-situ observations, and 

further compared with the original grid-based validation results. 
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 395 

Figure 9: Distribution of elevation differences between station elevations and corresponding DEM grid values (Red numbers mark 

elevation differences greater than 50m). 

Figure 10 summarizes the key findings. First, for average temperature, maximum temperature, minimum temperature, 

and atmospheric pressure, the RMSE and ME between in-situ observations and station-based estimates show substantially 

greater improvement than those derived from gridded estimates. Notably, the magnitude of improvement increases with 400 

larger absolute elevation differences. While relative humidity and sunshine duration also exhibit improvements, the extent is 

considerably smaller. In contrast, the CCs show modest increases across variables, though the improvement is less 

pronounced than that observed in error metrics. These results confirm that the MLP-based reconstruction framework yields 

more accurate estimates than the grid-based approach discussed in Section 4.2, particularly in high-altitude and 

topographically complex regions. 405 

These findings also highlight potential limitations in using in-situ station data to validate gridded meteorological 

products—especially in regions with coarse spatial resolution or substantial terrain variability. As grid size increases, spatial 

mismatches between stations and grid cell averages (in terms of latitude, longitude, and elevation) become more pronounced. 

Even at 1 km resolution, notable elevation mismatches were observed in high-altitude areas. For variables highly sensitive to 

elevation and geographic location—such as air temperature and atmospheric pressure—relying on a single station to 410 

represent an entire grid cell can introduce significant uncertainty in complex terrain. 
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Figure 10: Comparison of dotted line plots for RMSE, ME, and CC between in-situ data and station-based estimates, as well as 415 
between in-situ data and gridded data.  

4.5 Spatial distribution of meteorological elements in China at 1 km resolution 

To evaluate the spatial performance and climatic representativeness of the reconstructed dataset, we analyzed the long-term 

mean values of six meteorological variables at a spatial resolution of 1 km across mainland China from 1961 to 2019. The 

spatial distributions show strong consistency with known climatic gradients and topographic variations, reflecting the 420 

combined effects of latitude, elevation, and oceanic influence on regional meteorological conditions, as illustrated in Figur e 

11. Temperature exhibits clear spatial variation governed by both latitude and elevation. The Northern Temperate Zone and 

the Plateau Climate Zone record the lowest values, with annual mean, maximum, and minimum temperatures of −3.8 °C, 

4.3 °C, and −11.0 °C in the Northern Temperate Zone, and −1.7 °C, 6.2 °C, and −8.3 °C in the Plateau Climate Zone. In 

contrast, the Subtropical Zone records 16.1 °C, 21.3 °C, and 12.5 °C, while the Tropical Zone reaches 24.2 °C, 28.9 °C, and 425 

21.1 °C, respectively. Atmospheric pressure strongly reflects elevation differences. While most zones maintain annual mean 

values above 900 hPa, the Plateau Climate Zone shows a significantly lower pressure of approximately 608 hPa.  Relative 

humidity decreases from southeast to northwest, shaped by maritime influence and topographic relief. The Tropical and 

Subtropical coastal zones record the highest annual mean values of 83 % and 78 %, respectively. The Northern Temperate 

Zone reaches 70 %, while interior zones, including the Middle Temperate and Plateau Climate Zones, record lower values of 430 

approximately 55 %. Sunshine duration shows an inverse pattern relative to humidity and cloudiness. The longest annual 
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average sunshine durations are observed in the Qinghai–Tibet Plateau and the Middle Temperate Zone in Xinjiang and Inner 

Mongolia, with 8.0 h and 7.8 h per day, respectively. In contrast, the Subtropical coastal zone receives only about 4.6 h due 

to persistent cloud cover and high moisture levels. 

The reconstructed spatial patterns show strong agreement with China’s climatic zonation and physiographic structure, 435 

demonstrating that the dataset reliably captures the spatial distribution of key climate-controlling factors, including elevation, 

latitude, and terrain complexity. This consistency highlights the physical soundness and regional adaptability of the 

reconstruction framework, which is informed by topographic features rather than relying solely on spatial proximity. The 

dataset thereby offers robust support for regional-scale analyses in hydrology, meteorology, and ecology, especially in 

contexts where high spatial resolution and internal data consistency are required. 440 

 

Figure 11: Annual spatial distribution of 6 meteorological elements in China from 1961 to 2019 based on daily reconstructed 

products. 
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5 Data availability   

The 1 km daily dataset of near-surface meteorological variables over mainland China includes air temperature (average, 445 

maximum, and minimum) for the period 1961–2021, and atmospheric pressure, relative humidity, and sunshine duration for 

the period 1961–2019. The dataset is expected to undergo ongoing maintenance and temporal extension contingent on the 

availability of new observational data. The GeoTIFF-formatted output files at 1 km spatial resolution are freely accessible at 

https://doi.org/10.11888/Atmos.tpdc.301341 (Zhao et al., 2024). 

6 Conclusion  450 

This study presents a nationwide, high-resolution dataset of six daily near-surface meteorological variables—average, 

maximum, and minimum temperature, atmospheric pressure, relative humidity, and sunshine duration—reconstructed at 

1 km spatial resolution over mainland China for the period 1961–2019 (1961–2021 for air temperature). Instead of relying on 

traditional spatial interpolation, the reconstruction framework models nonlinear relationships between meteorological 

variables and topographic predictors—such as elevation, latitude, and longitude—enabling physically informed estimation 455 

across a wide range of climatic and geographic conditions.  

Validation using 118 independent meteorological stations demonstrates that the dataset achieves consistently high 

accuracy across all variables. For average, maximum, and minimum temperature, the median RMSEs are 1.03 °C, 1.19 °C, 

and 1.34 °C, respectively; the corresponding median MEs are approximately −0.09 °C, −0.10 °C, and −0.08 °C, with 

correlation coefficients equal to or greater than 0.99. Atmospheric pressure shows similarly strong performance, with a 460 

median RMSE of 2.48 hPa, a median ME of −0.02 hPa, and a correlation coefficient of 0.98. Relative humidity and sunshine 

duration also perform reliably, with median RMSEs of 6.02% and 1.48 h, MEs of −0.5% and 0.05 h, and correlation 

coefficients of 0.90 and 0.93, respectively. Further comparison reveals that station-to-grid validation underestimates the true 

accuracy of gridded products, particularly in topographically complex regions where elevation mismatches distort point-to-

grid comparisons. In such areas, model estimates based on exact station coordinates consistently yield better validation 465 

metrics than those derived from station-to-grid comparisons, especially for elevation-sensitive variables.  

The comparative evaluation against existing gridded products further confirms the quality and robustness of the 

reconstructed dataset, while complementing existing benchmark products with enhanced spatial resolution (1 km), 

particularly suited for heterogeneous environments. For average temperature, atmospheric pressure, and relative humidity, 

the reconstructed product exhibits consistently lower RMSE and ME than CMFD 2.0 at independent validation stations, with 470 

particularly substantial error reduction observed for atmospheric pressure. In the comparison of sunshine duration, the 

reconstructed dataset achieves nearly identical accuracy to the SSD benchmark product in terms of RMSE, ME, and CC, 

despite being validated using stations that may have been assimilated during the development of the SSD product.   

In addition to its high overall accuracy, the dataset demonstrates stable spatial performance across China’s major 

climatic zones. Temperature and pressure variables maintain low RMSEs and strong correlations in both humid southeastern 475 
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and arid northwestern regions, with most temperature RMSEs, MEs, and CCs falling within the ranges of 0.49 °C to 2 °C, 

−2 °C to 2 °C, and 0.95 to 1.00, respectively. Relative humidity and sunshine duration show limited spatial variability, with 

only a few isolated stations displaying notable deviations. Even in data-sparse regions like Taiwan—excluded from model 

training—the reconstructed temperature fields align reasonably well with in-situ observations, indicating the dataset’s spatial 

robustness beyond the training domain. 480 

The dataset provides spatially continuous, temporally complete, and variable-accurate daily meteorological records, 

supporting a wide range of regional-scale applications in hydrology, meteorology, and ecology. 
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